
COMPLEX ANALYSIS

TOPIC VIII: THE REAL EXPONENTIAL FUNCTION

PAUL L. BAILEY

1. Exponents

Let a be a positive real number, and let x be a real number. We ask, what is
the meaning of ax?

1.1. When x is a positive integer. Let n = x, and assume that n is a positive
integer. Then an is defined to mean the product of n numbers whose value is a:

an = a× · · · × a︸ ︷︷ ︸
n times

.

From this, we obtain two significant properties.

(E1) am+n = am · an
(E2) (am)n = amn

To see this, write

am+n = a× · · · × a︸ ︷︷ ︸
m+n times

= a× · · · × a︸ ︷︷ ︸
m times

× a× · · · × a︸ ︷︷ ︸
n times

= am × an.

and

(am)n = (a× · · · × a︸ ︷︷ ︸
m times

)n = (a× · · · × a︸ ︷︷ ︸
m times

)× · · · × (a× · · · × a︸ ︷︷ ︸
m times

)

︸ ︷︷ ︸
n times

= a× · · · × a︸ ︷︷ ︸
mn times

= amn.

We wish to extend the meaning of ax so that it is defined for any real number
x, in such a way that the properties (E1) and (E2) remain true.

1.2. When x = 0. Consider the case when x = 0. We multiply a times a0;
whatever a0 means, if property (E1) is to remain true, we have

aa0 = a1a0 = a1+0 = a1 = a.

Dividing both sides by a gives

a0 = 1.

1.3. When x is a negative integer. Consider the case when x is a negative
integer, so that x = −n for some positive integer n. For (E1) to remain true, we
must have

anax = an+x = a0 = 1.

In this case,

a−n =
1

an
.
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1.4. When x is rational. Consider the case when x = 1
n , where n is a positive

integer. For (E2) to remain true, we must have

(a1/n)n = an/n = a1 = a.

Thus, a1/n is the unique number whose nth power is a; that is,

a1/n = n
√
a.

Consider the case when x = m
n , where m and n are positive integers. Then (E2)

produces am/n = (am)1/n, so

am/n = n
√
am.

1.5. When x is irrational. We now consider the case when x is irrational. This
is the hardest step, and requires a limiting process of some sort.

Integers are obtained from natural numbers by algebraic considerations (defin-
ing subtraction), and rational numbers are obtained from integers by additional
algebraic considerations (defining division); however, real numbers are obtained
from rationals by geometric considerations (filling in gaps in the number line). So,
defining ax for irrational x may require order or distance.

There is an additional property of exponents which is important in this context:

(E3) if 1 < a and r < s, then ar < as

This is true when x is any rational number, and we wish it to remain true for any
real number.

We could attempt to define ax as the limit of a sequence, as follows. We line
up all of the rationals by the order relation <, and see that there are gaps in the
line; so, too, we can line up all of the numbers of the form aq where q is rational,
and see that there are gaps in the line; we hope to fill these gaps by numbers of the
form ax, where x is irrational.

Let x be an irrational number, and define the sequence (xn) by

xn =
b10n−1xc

10n−1
,

so that (xn) is a bounded increasing sequence of rational numbers, and

x = lim
n→∞

xn.

This is a sequence of decimal estimates of x of increasing accuracy; it is an increasing
sequence that converges to x.

Since xn is rational, axn is defined. Consider the sequence (axn); by Property
(E3), this is an increasing sequence of real numbers which is bounded above by
adxe. Thus, it converges. We define

ax = lim
n→∞

axn .

This definition extends the previous definitions in such a way as to preserve proper-
ties (E1), (E2), and (E3). The problem with this approach is that it is difficult to
prove these properties, as well as the other properties we would like. Life is easier
if take advantage of integration, and start by defining log; we take this approach.
Thus, assume that we have never seen a definition for e, ex, log x, or for ax when
x is irrational.



3

2. The (Real) Natural Logarithm

Definition 1. The (real) natural logarithm is the function

log : (0,∞)→ R given by log(x) =

∫ x

1

1

t
dt.

Proposition 1. The function log is differentiable on its domain, with

d

dx
log x =

1

x
.

Proof. This follows from the Fundamental Theorem of Calculus. �

Proposition 2. Let a, b ∈ R and r ∈ Q. Then

(a) log(1) = 0;
(b) log(ab) = log(a) + log(b);
(c) log(ar) = r log(a).

Proof. We know that log(1) =
∫ 1

1

1

t
dt = 0.

Let x be a real variable. Then the chain rule gives

d

dx
log(ax) =

1

ax
· a =

a

ax
=

1

x
.

Thus log(ax) and log(x) have the same derivative, and so they differ by a constant,
say log(ax) = log(x) + C. If we set x = 1, we have log(a) = C, whence log(ax) =
log(a) + log(x). Now set x = b to obtain log(ab) = log(a) + log(b).

For part (b), we note that by the chain rule and the power rule (which has
previously been shown for rational exponents), we have

d

dx
log(xr) =

1

xr
· rxr−1 =

rxr−1

xr
=

r

x
=

d

dx
r log(x).

So log(xr) and r log(x) have the same derivative, and so they differ by a constant,
say log(xr) = r log(x) +C. If x = 1, we obtain 0 = 0 +C, so C = 0. Setting x = a,
we get log(ar) = r log(a). �

Proposition 3. The function log : (0,∞)→ R is bijective.

Proof. One may use the divergence of the harmonic series
∑ 1

n
to show that log

maps onto R, and so is surjective.

Since
d

dx
log x =

1

x
> 0 for x ∈ dom(log) = (0, 1), we see that log is increasing

on its domain, and so is injective. Therefore, log is bijective. �
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3. The (Real) Exponential Function

Definition 2. The (real) exponential function is defined to be the function

exp : R→ (0,∞)

which is the inverse of the natural logarithm; thus exp satisfies the defining property

expx = y ⇔ log y = x.

Proposition 4. Let a, b ∈ R and let r ∈ Q. Then

(a) exp(0) = 1;
(a) exp(a + b) = exp(a) · exp(b);
(b) exp(a)r = exp(ar).

Proof. That exp(0) = 1 is a restatement of the fact that log(1) = 0.
We have

log(exp(a + b)) = a + b = log(exp(a)) + log(exp(b)) = log(exp(a) · exp(b)),

by properties of log. Since log is injective, this implies that exp(a + b) = exp(a) ·
exp(b).

Similarly,

log(exp(a)r) = r log(exp(a)) = ra = ar = log(exp(ar));

since log is injective, exp(a)r = exp(ar). �

Proposition 5. The function exp is differentiable on its domain, with

d

dx
expx = expx.

Proof. We use implicit differentiation.
Let y = expx. Then x = log(y). Take the derivative of both sides to get

1 =
d

dx
x =

d

dx
log y =

1

y

dy

dx
,

so
dy

dx
= y. That is,

d

dx
expx = expx. �



5

4. The Base a Exponential Function

Definition 3. Let a ∈ R, a > 0, and a 6= 1.
The base a exponential function is

expa : R→ (0,∞) given by expa(x) = exp(x log a).

Proposition 6. If r ∈ Q, then expa(r) = ar.

Proof. We have expa(r) = exp(r log a) = exp(log(ar)) = ar. �

Definition 4. Define ax, where a is a positive real number, by

ax = exp(x log a).

Proposition 7. The function expa is differentiable on its domain, and

d

dx
expa(x) = log(a) expa(x).

Proof. Using the definition of expa and the chain rule, we have

d

dx
expa(x) =

d

dx
exp(x log a) = exp(x log a) log a = log(a) expa(x).

�

Definition 5. The number e ∈ R is defined by

e = exp(1).

Proposition 8. The function exp satisfies

exp(x) = expe(x) = ex.

Proof. By definition, ex = exp(x log e) = exp(x · 1) = exp(x). �

Proposition 9. The function expa is bijective.

Proof. If a ∈ (0, 1), the log(a) < 0, since log(1) = 0 and log is increasing. In this
case, expa is decreasing. Otherwise, a > 1, and log(a) > 0, so expa is increasing.
In either case, expa is injective. Is is clearly onto (0,∞), since exp is. So expa is
bijective. �
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5. The Base a Logarithm

Definition 6. Define the base a logarithm to be the function

loga : (0,∞)→ R
which is the inverse of expa. Thus loga has the defining property

loga(x) = y ⇔ ay = x.

Proposition 10. The function loga is differentiable on its domain, with

d

dx
loga(x) =

1

log(a)x
.

Proof. We use implicit differentiation. Let y = loga(x), so that x = expa(y).
Differentiating both sides of this equation gives

1 =
d

dx
x =

d

dx
expa(y) = log(a) expa(y)

dy

dx
= log(a)x

dy

dx
.

Thus
dy

dx
=

1

log(a)x
. �
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